Urban Traffic Management: Understanding Short-Term Traffic Prediction Control Systems

VietTraffic 2008
Hanoi, Vietnam, 15.10.2008

Prof.-Univ. Klaus Banse
General Manager SIT Ltda
President of ITS Colombia
Content

• Traffic prediction as logical development step

• Prediction pixel effect and prediction window

• Simplified operational diagram for short and mid term prediction

• Conclusions
Traffic prediction as logical development step

- Fix time (no traffic dependency)
- Signal program selection (responsive control)
- Signal program calculation (adaptive control)
 - Successive program development
 - Split & cycle
 - Network coordination
 - Urban system integration
- Predictive adaptive (short term)

Current scientific and methodological development (Summer 2008)
Prediction pixel effect(1) and prediction window

(1) Prof. Klaus Banse, Universidad de Cartagena, Predictive traffic models, TMC Lecture, 2006
Prediction pixel effect and prediction window

Down Factors
- Number of parameters
- Number of data acquisition points
- Accuracy of traffic data
- Level of methodological integration
- Sophistication of traffic models

Up Factors
- Number of prediction parameters
- Number of interruptions (intersections)

Short term prediction
Mid term prediction
Long term prediction
Simplified operational diagram for short and mid term prediction

- Traffic Level
 - Traffic and incidents
 - Vehicle based information (VII)

- Control Level
 - Central Traffic Control and Management System
 - Transport management and other systems (on and offline)

- Prediction, calibration and learning loop
- Methodological Level
 - Traffic data and decision data base
 - Predictive algorithms, methods
 - Multi run network micro simulation
Conclusions

• Traffic prediction will be part of the majority of traffic management and control systems in the near future

• Traffic models, algorithms and methods can be independent from the traffic management system manufacturer

• Future investigation will be focusing on methods for automatic calibration and behavior models as well as self learning systems